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In this paper, the dynamic behaviors of a Monod type chemostat model with
impulsive perturbation are investigated. Using Floquet theory and small amplitude per-
turbation method, we prove that the microorganism-eradication periodic solution is
asymptotically stable if the impulsive period satisfies some conditions. Moreover, the
permanence of the system is discussed in detail. Finally, we verify the main results by
numerical simulation.
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1. Introduction

The chemostat is a simple and well-adopted laboratory apparatus used to
culture microorganisms. It can be used to investigate microbial growth and has
the advantage that the parameters are easily measurable. Sterile growth medium
enters the chemostat at a constant rate; the volume within the chemostat is pre-
served by allowing excess medium to flow out through a siphon. We inoculate
this chemostat with a heterotrophic bacterium that finds, in the medium, a lot
of all necessary nutrients but one. This last nutrient is the limiting substrate. In
[1], Smith and Waltman describe a chemostat and formulate various mathemati-
cal chemostat models. The specific growth rate of bacteria saturates at sufficiently
high-substrate concentration. The functional response of the bacterium on the
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substrate is commonly assumed to be of the Monod type. Equations of the basic
model take the form [2]

S
′
(t) = Q(S0 − S(t)) − µm S(t)x(t)

δ(Km + S(t))
,

x
′
(t) = x(t)(

µm S(t)

Km + S(t)
− Q),

(1.1)

where the state variables S(t) and x(t) denote the concentrations of the limit-
ing substrate and the microorganism at time t , respectively; S0 denotes the input
concentration of the limiting substrate per unit of time; δ denotes the yield of
the microorganism per unit mass of substrate; Q is the dilution rate of the che-
mostat. The function p(S) � µm S(t)

Km+S(t) denotes the microbial growth rate.
The dynamic behaviors of the basic model (1.1) are simple. The micro-

organism can either become extinct or persist at the positive equilibrium. The
results depend on two parameters m and λ, where m = µm/Q and λ = Km

S0(m−1)
.

If m � 1 or m > 1 and λ � 1, then the microorganism becomes extinct. If m > 1
and λ < 1, then the microorganism persists.

In recent years, the microbial continuous culture has been investigated in
[3–6] and some interesting results were obtained. Many scholars pointed out that
it was necessary and important to consider models with periodic perturbations,
since these models might be quite naturally exposed in many real world phenom-
ena (for instance, food supply, mating habits, harvesting). In fact, almost pertur-
bations occur in a more-or-less periodic fashion. However, there are some other
perturbations such as fires, floods, and drainage of sewage which are not suit-
able to be considered continually. These perturbations bring sudden changes to
the system. Systems with sudden perturbations are involving in impulsive differ-
ential equations, which have been studied intensively and systematically in [7,8].
Authors, in [9–12], introduced some impulsive differential equations in popula-
tion dynamics and obtained some interest results. The research on the chemostat
model with impulsive perturbations is not too much yet (see Refs. [13,14] and
references therein). However, this is an interest problem in mathematical biology
and laboratory experiment.

In this paper, we investigate how the impulsive perturbation of the substrate
affects the dynamic behaviors of the chemostat continuous system. The chemo-
stat model with impulsive perturbation is written as:

S
′
(t) = −QS(t) − µm S(t)x(t)

δ(Km + S(t))
, t �= nT,

x
′
(t) = x(t)

(
µm S(t)

Km + S(t)
− Q

)
, t �= nT,

S(nT +) = S(nT ) + τ S0, x(nT +) = x(nT ), n = 1, 2, . . . ,

S(0+) � 0, x(0+) � 0,

(1.2)
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where the first and second equations hold between pulses, the third equation
describes the actual pulsing. S(t), x(t), and other parameters are the same as
(1.1). T = τ/Q is the period of the pulsing, τ S0 is the amount of limiting sub-
strate pulsed each T . QS0 units of substrate are added, on average, per unit of
time.

2. Preliminary results

Let R+ = [0, +∞), R2+ = {z ∈ R2 : z � 0, z = (S, x)}, Ω = intR2+, N be the
set of nonnegative integers. Denote f = ( f1, f2)

T the map defined by the right
hand of the anterior two equations of system (1.2).

Let V : R+ × R2+ → R+. Then V is said to belong to class V0 if

(i) V is continuous in (nT, (n + 1)T ] × R2+ and for each z ∈ R2+,

n ∈ N , lim
(t,y)→(nT +,z)

V (t, y) = V (nT +, z) exists;

(ii) V is locally Lipschitzian in z.

Definition 2.1. Let V ∈ V0, (t, z) ∈ (nT, (n + 1)T ] × R2+. The upper right deriv-
ative of V (t, z) with respect to the impulsive differential system (1.2) is defined
as

D+V (t, z) = lim sup
h→0+

1
h
[V (t + h, z + h f (t, z)) − V (t, z)].

The solution of system (1.2) is a piecewise continuous function z(t) =
(S(t), x(t)): R+ → R2+, z(t) is continuous on (nT, (n +1)T ], n ∈ N and z(nT +) =

lim
t→nT + z(t) exists. Obviously, the global existence and uniqueness of solutions of

the system (1.2) is guaranteed by the smoothness properties of f (see Ref. [7] for
details). Hence, we have the following lemma.

Lemma 2.1. Suppose z(t) is a solution of (1.2) with z(0+) � 0. Then z(t) � 0 for
all t � 0. Moreover, if z(0+) > 0, then z(t) > 0 for all t � 0.

Definition 2.2. System (1.2) is said to be permanent if there exist constants M �
m > 0 such that m � S(t) � M, m � x(t) � M for t large enough, where
(S(t), x(t)) is any solution of (1.2) with S(0+) > 0, x(0+) > 0.

Lemma 2.2. (Comparison Theory, [7, Theorem 3.1.1]) Let V : R+ × R2+ → R+
and V ∈ V0. Assume that

D+V (t, z(t)) � g(t, V (t, z(t))), t �= nT,

V (t, z(t+)) � ψn(V (t, z(t))), t = nT,
(2.1)
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where g: R+ × R+ → R is continuous in (nT, (n + 1)T ] × R+ and for each x ∈
R+, n ∈ N , lim

(t,y)→(nT +,x)
g(t, y) = g(nT +, x) exist; ψn: R+ → R+ is nonde-

creasing. Let r(t) = r(t, 0, u0) be the maximal solution of the scalar impulsive
differential equation

u′ = g(t, u), t �= nT,

u(t+) = ψn(u(t)), t = nT,

u(0+) = u0,

(2.2)

existing on [0, ∞). Then V (0+, z0) � u0 implies that V (t, z(t)) � r(t), t � 0,
where z(t) = z(t, 0, z0) is any solution of (1.2) existing on [0, ∞).

Remark. In Lemma 2.2, if the directions of the inequalities in (2.1) are reversed,
that is,

D+V (t, z(t)) � g(t, V (t, z(t))), t �= nT,

V (t, z(t+)) � ψn(V (t, z(t))), t = nT

then V (t, z(t)) � ρ(t), t � t0, where ρ(t) is the minimal solution of (2.2) on
[0, ∞).

The function we will use is in the form −Qω(t). For convenience, we give
some basic properties of the following system

ω
′
(t) = −Qω(t), t �= nT,

�ω(t) = ω(t+) − ω(t) = τ S0, t = nT,

ω(0+) = S(0+) � 0.

(2.3)

Clearly,

ω∗(t) = τ S0e−Q(t−nT )

1 − e−QT
, t ∈

(
nT, (n + 1)T ], n ∈ N ,

(
ω∗(0+) = τ S0

1 − e−QT

)

is a positive periodic solution of (2.3). The solution of (2.3) is ω(t) = [ω(0+) −
ω∗(0+)]e−Qt + ω∗(t), t ∈ (nT, (n + 1)T ], n ∈ N . Therefore, the following result
holds.

Lemma 2.3. System (2.3) has a positive periodic solution ω∗(t) and |ω(t) −
ω∗(t)| → 0 as t → ∞ for any solution ω(t) of (2.3). Moreover, ω(t) � ω∗(t)
if ω(0+) � ω∗(0+) and ω(t) < ω∗(t) if ω(0+) < ω∗(0+).
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3. Extinction and permanence

Obviously, system (1.2) has a T -periodic solution (S∗(t), 0) at which micro-
organism culture fails, where

(S∗(t), 0) =
(

τ S0e−Q(t−nT )

1 − e−QT
, 0

)
, t ∈ (nT, (n + 1)T ].

Theorem 3.1. Periodic solution (S∗(t), 0) is globally asymptotically stable if

∫ T

0

µm S∗(t)
Km + S∗(t)

dt < QT, i.e.
µm

Q
ln

Km(1 − e−QT ) + τ S0

Km(1 − e−QT ) + τ S0e−QT
< QT .

Proof. The local asymptotic stability of periodic solution (S∗(t), 0) may be
determined by considering the behavior of small amplitude perturbation of the
solution. Let (S(t), x(t)) be any solution of (1.2). We define S(t) = u(t) +
S∗(t), x(t) = v(t).

The corresponding linear system of (1.2) is

u′(t) = −Qu − 1
δ

µm S∗(t)
Km + S∗(t)

v, t �= nT,

v′(t) = [ µm S∗(t)
Km + S∗(t)

− Q]v, t �= nT,

u(t+) = u(t), t = nT,

v(t+) = v(t), t = nT .

(3.1)

Let Φ(t) be a fundamental matrix of (3.1). Then Φ(t) satisfies

dΦ(t)

dt
=

⎛
⎜⎜⎝

−Q −1
δ

µm S∗(t)
Km + S∗(t)

0
µm S∗(t)

Km + S∗(t)
− Q

⎞
⎟⎟⎠ Φ(t) � A(t)Φ(t) (3.2)

and Φ(0) = I , the identity matrix.
The resetting impulsive conditions of (3.1) becomes

(
u(nT +)

v(nT +)

)
=

(
1 0
0 1

) (
u(nT )

v(nT )

)
.

The stability of the periodic solution (S∗(t), 0) is determined by the eigen-
values of the monodromy matrix

M =
(

1 0
0 1

)
Φ(T ) = Φ(T ).



842 S. Sun and L. Chen / Dynamic behaviors of monod type Chemostat model

From (3.2), we can obtain Φ(T ) = Φ(0) exp(
∫ T

0 A(t)dt) � Φ(0) exp( Ā).
Therefore, the Floquet multipliers of system (3.1) are

µ1 = exp(−QT ) < 1, µ2 = exp
(∫ T

0

µm S∗(t)
Km + S∗(t)

dt − QT

)
.

According to Floquet theory ([8, Theorem 3.5]), (S∗(t), 0) is asymptotically sta-
ble if

|µ2| < 1, i.e.
µm

Q
ln

Km(1 − e−QT ) + τ S0

Km(1 − e−QT ) + τ S0e−QT
< QT .

In the sequel, we prove the global attractability of periodic solution
(S∗(t), 0).

Note that S′(t) � −QS(t) and the comparison system (2.3). We have S(t) �
ω(t) and S(t) → ω∗(t) = S∗(t) as t → ∞ by lemmas 2.2 and 2.3.

From the condition of theorem 3.1, we can choose ε > 0 small enough

such that σ =
∫ T

0

µm(S∗(t) + ε)

Km + S∗(t) + ε
dt − QT < 0 and S(t) � S∗(t) + ε for t large

enough. Without loss of generality, we can assume S(t) � S∗(t)+ ε for all t � 0.
From system (1.2), we have

x ′(t) � x(t)

[
−Q + µm(S∗(t) + ε)

Km + S∗(t) + ε

]
. (3.3)

Integrating (3.3) on (nT, (n + 1)T ], we have

x((n + 1)T ) � x(nT +) exp

(∫ (n+1)T

nT

[
−Q + µm(S∗(t) + ε)

Km + S∗(t) + ε

]
dt

)
= x(nT ) exp(σ ).

Therefore, x(nT ) � x(0+) exp(nσ) and x(nT ) → 0 as n → ∞. Since 0 � x(t) �
x(nT ) exp(σ ) � x(0+) exp((n + 1)σ ) for any t ∈ (nT, (n + 1)T ], we have x(t) → 0
as t → ∞. The proof is complete.

Theorem 3.2. There exists a constant M > 0 such that S(t) � M, x(t) � M for
each solution (S(t), x(t)) of (1.2) with all t large enough.

Proof. Suppose (S(t), x(t)) is any solution of (1.2). Let V (t) = δS(t) + x(t).
Then V ∈ V0 and{

D+V (t) = −δQS(t) − Qx(t) = −QV (t), t �= nT .

V (nT +) = V (nT ) + δτ S0, n = 1, 2, . . .

Obviously, we can choose K > 0 such that

D+V (t) � −QV (t) + K , t �= nT,

V (nT +) = V (nT ) + δτ S0, n = 1, 2, . . .
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By Comparison Theory, we have

V (t) �
(

V (0+) − K

Q

)
e−Qt + δτ S0(1 − e−nQT )

1 − e−QT
e−Q(t−nT ) + K

Q
,

× t ∈ (nT, (n + 1)T ].
Therefore, V (t) is ultimately bounded by a constant and there exists a constant
M > 0 such that S(t) � M, x(t) � M for any solution (S(t), x(t)) of system (1.2)
with all t large enough. The proof is complete.

Now we investigate the permanence of the system (1.2).

Theorem 3.3. System (1.2) is permanent if∫ T

0

µm S∗(t)
Km + S∗(t)

dt > QT, i.e.
µm

Q
ln

Km(1 − e−QT ) + τ S0

Km(1 − e−QT ) + τ S0e−QT
> QT .

Proof. Suppose (S(t), x(t)) is any solution of (1.2) with (S(0+), x(0+)) > 0.
From Theorem 3.2, we can assume S(t) � M, x(t) � M for t � 0. Choose ε1 > 0
small enough such that

m1 = τ S0e−QT

1 − e−QT
− ε1 > 0 and σ0 = m1µm

Km + m1
− Q < 0.

It follows from lemmas 2.2 and 2.3 that S(t) > m1 for all t large enough.
Next, we prove that there exists an m2 > 0 such that x(t) > m2 for all t

large enough in two steps.
Step 1. Since

∫ T
0

µm S∗(t)
Km+S∗(t)dt > QT , we can choose m3 > 0, ε2 > 0 small

enough such that

σ =
∫ T

0
(

µm(ȳ(t) − ε2)

Km + (ȳ(t) − ε2)
− Q)dt > 0, where

ȳ(t) = τ S0 exp{−(Q + m3µm
δKm

)(t − nT )}
1 − exp{−(Q + m3µm

δKm
)T } , t ∈ (nT, (n + 1)T ].

We claim that x(t) < m3 cannot hold for all t � 0, otherwise,

S′(t) � −S(t)

(
Q + m3µm

δKm

)
.

By lemmas 2.2 and 2.3, we have S(t) � y(t) and y(t) → ȳ(t), t → ∞, where y(t)
is the solution of

y′ = −y(Q + m3µm

δKm
), t �= nT,

�y = y(t+) − y(t) = τ S0, t = nT,

y(0+) = S(0+) > 0.

(3.4)
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Therefore, there exists a T1 > 0 such that S(t) � y(t) � ȳ(t) − ε2 and

x ′ � x

(
−Q + µm(ȳ(t) − ε2)

Km + (ȳ(t) − ε2)

)
(3.5)

for t � T1.
Let N1 ∈ N and N1T � T1. Integrating (3.5) on (nT, (n + 1)T ], n � N1, we

have

x((n + 1)T ) � x(nT +) exp

{∫ (n+1)T

nT
(−Q + µm(ȳ(t) − ε2)

Km + (ȳ(t) − ε2)
)dt

}
= x(nT )eσ .

Then x((N1 + k)T ) � x(N1T )ekσ → ∞ as k → ∞, which is a contradiction.
Hence, there exists a t1 > 0 such that x(t1) � m3.

Step 2. If x(t) � m3 for all t � t1, then the result is obtained. Hence, we
need only to consider those solutions which leave the region Ω1 = {z ∈ R2+ :
x(t) < m3} and enter it again. Let t∗ = inf{t � t1 : x(t) < m3}. Then x(t) � m3
for t ∈ [t1, t∗) and x(t∗) = m3 since x(t) is continuous. Suppose t∗ ∈ [n1T, (n1 +
1)T ), n1 ∈ N . Choose n2, n3 ∈ N such that

n2T > T2 = δKm

δQKm + m3µm
ln

M + τ S0

ε2
, e(n2+1)σ0T en3σ > 1.

Let T3 = n2T +n3T . We claim that there exists a t2 ∈ [(n1 +1)T, (n1 +1)T +
T3] such that x(t2) � m3. Otherwise, x(t) < m3, t ∈ [(n1 + 1)T, (n1 + 1)T + T3].
Consider (3.4) with y((n1 + 1)T +) = S((n1 + 1)T +), we have

y(t) =
(

y((n1 + 1)T +) − τ S0

1 − exp{−(Q + m3µm
δKm

)T }

)
e−(Q+ m3µm

δKm
)(t−(n1+1)T ) + ȳ(t),

t ∈ (nT, (n + 1)T ], n1 + 1 � n � n1 + 1 + n2 + n3.
Thus

|y(t) − ȳ(t)| < (M + τ S0) exp
{
−

(
Q + m3µm

δKm

)
n2T

}
< ε2

and

S(t) � y(t) � ȳ(t) − ε2,

or t ∈ [(n1 + 1 + n2)T, (n1 + 1)T + T3], which implies (3.5) holds for t ∈
[(n1 + 1 + n2)T, (n1 + 1)T + T3].

Integrating (3.5) on [(n1 + 1 + n2)T, (n1 + 1)T + T3], we have

x((n1 + 1 + n2 + n3)T ) � x((n1 + 1 + n2)T )en3σ .
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It follows from the second equation of (1.2) that

x ′(t) � x(t)

[
m1µm

Km + m1
− Q

]
= σ0x(t).

Integrating it on [t∗, (n1 + 1 + n2)T ], we have

x((n1 + 1 + n2)T ) � x(t∗)eσ0(n2+1)T = m3eσ0(n2+1)T .

Thus x((n1 + 1 + n2 + n3)T ) � m3en3σ eσ0(n2+1)T > m3, which is a contradiction.
Let t̄ = inf{t � t∗ : x(t) � m3}. Then x(t̄) � m3. For t ∈ [t∗, t̄), we have

x(t) � x(t∗)eσ0(t−t∗) � m3eσ0(1+n2+n3)T � m2. For t > t̄ , the same arguments can
be continued since x(t̄) � m3. Hence, we have x(t) � m2 for all t � t1. The proof
is complete.

In the following, we verify our main results by numerical simulation. Let
µm = 2.0, Km = 0.58, Q = 1, δ = 10, T = 3. Then whether the microorganism is
extinct or not is determined completely by the input amount of the substrate for
the fixed period T . Thus the critical value of the input amount of the substrate
is S̃0 ≈ 2.47. By theorem 3.1, If the input amount of the substrate S0 = 2.45 <

2.47, the substrate S(t) presents periodic oscillation as t → ∞, the microorgan-
ism x(t) is extinct as t → ∞ (see figure 1). In this case, the substrate S(t) and
the microorganism x(t) can not coexist (see the left figure of figure 3). When the
input amount of the substrate S0 = 2.49 > 2.47, by theorem 3.3, the microorgan-
ism x(t) and the substrate S(t) both present periodic oscillation and can coexist
on a stable positive periodic solution as t → ∞ (see figure 2 and the right figure
of figure 3).

It is a significant and interesting problem whether the microbial culture is
successful. We see that the microbial culture is successful if lim inf t→∞ x(t) >

x(0+), the microbial culture is failed if lim supt→∞ x(t) < x(0+). This fact is
very close to practice. We can obtain the microorganism by increasing the input
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Figure 1. µm = 2.0, Km = 0.58, Q = 1, δ = 10, S0 = 2.45, T = 3. (S(0+), x(0+)) = (1.5, 0.1).
The left figure is time series of S(t), the right one is time series of x(t).
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Figure 2. µm = 2.0, Km = 0.58, Q = 1, δ = 10, S0 = 2.49, T = 3. (S(0+), x(0+)) = (1.5, 0.1).

The left figure is time series of S(t), the right one is time series of x(t).
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Figure 3. µm = 2.0, Km = 0.58, Q = 1, δ = 10, T = 3. (S(0+), x(0+)) = (1.5, 0.1). The left
figure is phase portrait of S(t) and x(t) for S0 = 2.45, the right one is phase portrait of S(t) and

x(t) for S0 = 2.49.
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Figure 4. µm = 2.0, Km = 0.58, Q = 1, δ = 10, S0 = 2.6, T = 3. (S(0+), x(0+)) = (1.5, 0.1).
The left figure is time series of x(t), the light one is phase portrait of S(t) and x(t).

amount of the substrate S0. For example, if S0 = 2.6 > S0
min = 2.56, then

lim inf t→∞ x(t) = 0.15 > x(0+) = 0.1 as t → ∞ (see figure 4). Thus, the micro-
organism is obtained. Obviously, if both the continuous culture and the impul-
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sive culture can obtain the microorganism, the latter is better than the former
since the impulsive culture can save the substrate.
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